
Research briefing

CellBender 
removes 
technical 
artifacts from 
single-cell RNA 
sequencing 
data

The conversion of biological 
molecules into digital signals 
through sequencing is a 
complex process that often 
generates substantial systematic 
background noise. This noise can 
obscure important biological 
insights. However, by precisely 
identifying and removing this 
noise, we can bring the true 
signal into focus and eliminate 
misleading results from 
downstream analyses.

The problem

High-throughput assays are helping to  
answer fundamental questions in cell 
biology by enabling measurements on a 
scale that has never before been possible. 
Sequencing (that is, reading the nucleic 
acid sequence of individual molecules) 
enables the quantification of RNA in indi-
vidual cells in a high-throughput fashion. 
In single-cell RNA sequencing (scRNA-seq), 
RNA molecules are counted by copying 
them to complementary DNA, amplify-
ing their numbers using the polymerase 
chain reaction, sequencing them, mapping 
the sequences to genes, and counting the 
number of times each gene is detected in 
each cell1. Some trade-offs are necessary 
when moving from low-throughput assays 
to high-throughput ones, however, and it 
is important to understand and quantify 
these trade-offs if subsequent measure-
ments are to be precise. In scRNA-seq, 
technical artifacts that are inherent in 
the experimental method add systematic 
noise to these measurements (Fig. 1a). Such 
systematic and structured noise can skew 
conclusions about cell functions, fates and 
perturbation responses.

The solution

We spent several years carefully studying 
scRNA-seq datasets to understand the 
phenomenology of systematic noise in 
these experiments and translating this 
understanding into mathematical models. 
Leveraging advances in machine learning —  
in particular, building on stochastic varia
tional inference in generative Bayesian  
models2 — we were able to construct princi-
pled models that captured the generative 
process for scRNA-seq data, both signal 
and noise. Performing inference3 in the 
context of these models enabled us to 
calculate probabilities of both signal and 
noise components of the measured data. 
Distilling these probabilities down into an 
optimal estimate of gene expression, ready 
for use in downstream analyses, was the 
aim of much of our research toward the end 
of this project.

Our approach provides a rigorous way 
to denoise scRNA-seq data in an unsuper-
vised manner — that is, without the need for 
sample-specific preprocessing or prior bio-
logical knowledge from an analyst. Rather, 
we rely on the phenomenology of how 
such experiments generate these data to 
determine which droplets in an experiment 
contain cells, so that the empty droplets  
can be excluded from downstream analysis.  
CellBender also provides an estimate of 
the profile of cell-free RNA, which is one 

of the main contributors to background 
noise. CellBender not only provides a ‘best 
estimate’ of the denoised gene expression 
matrix (meaning a denoised integer count 
matrix suitable for downstream use), but 
also enables use of the full inferred posterior 
probability distribution over the number of 
denoised counts in each cell, which can pro-
vide precise quantitative answers to interest-
ing biological questions that would other-
wise be difficult to answer, such as: “What 
is the probability that this cell contains a 
nonzero number of viral RNA counts?”

The implications

Removal of systematic noise from 
scRNA-seq datasets improves several 
aspects of downstream analysis and sharp-
ens the biological inferences that can be 
drawn from such data. Single nucleus (sn) 
RNA-seq data, which is more prone than 
scRNA-seq data to systematic noise, shows 
particularly striking improvement after 
noise removal. Marker genes show increa
sed specificity for their respective cell 
types (Fig. 1b), and proteins measured  
via antibody labeling (as in cellular 
indexing of transcriptomes and epitopes 
(CITE)-seq4), which are highly affected by 
background noise, likewise show increased 
cell type specificity and concordance 
with RNA measurements. Importantly, in 
experiments comparing case and control 
conditions (such as diseased and healthy 
states), we demonstrate that systematic 
background noise present in the raw data 
leads to detection of spurious differen-
tially expressed genes and that these false 
discoveries can be removed by CellBender 
preprocessing of the datasets.

Although the principled model under
lying CellBender is faithful to the phenome-
nology of scRNA-seq experiments, it cannot 
capture the full complexity of real datasets. 
The extent to which our inferred probability  
distributions over noise counts reflect 
reality will depend on the validity of the 
modeling assumptions, which we describe 
in detail in the research paper.

In future work, it will be interesting to 
explore the extent and phenomenology  
of systematic noise in other single-cell  
measurement modalities. Do assay for  
transposase-accessible chromatin (ATAC)-seq  
data5 exhibit the same systemic noise  
seen in scRNA-seq and antibody-labeled  
protein measurements? If not, how is  
the noise different, and is there sufficient 
noise in ATAC-seq data to warrant its  
removal?
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Fig. 1 | The effect of CellBender noise removal on RNA sequencing data. a, Single-nucleus RNA sequencing 
library preparation generates cell-free RNA (black), which is packaged into droplets along with cells (red) and 
barcode beads (green hexagons); this is a source of systematic noise. Uniform manifold approximation and 
projection (UMAP) plot shows cell types from a published 600,000-nucleus heart dataset. VSMC, vascular 
smooth muscle cell. b, UMAP plots show counts of CTNNA3, a protein-coding gene involved in cell–cell 
adhesion with known cell type expression, before and after CellBender noise removal. Gene expression assay 
results become much more cell-type specific. © 2023, Fleming, S. J. et al.

Expert opinion

“CellBender has already been adopted by 
many research groups. It is distinguished 
by the sophistication of its computational 
model, which is based on unsupervised 
neural networks and probabilistic 
modeling and which includes many 
relevant experimental details (including 
ambient RNA transcripts, barcode 

swapping, per-cell and per-droplet 
sampling rates, and appropriate count-
based noise models). The detailed 
comparison of different noise estimation 
strategies sets a strong example for 
computational methods developers.”  
Eran A. Mukamel, University of California 
San Diego, La Jolla, CA, USA.

Behind the paper

CellBender was the result of a fruitful 
partnership between the Data Sciences 
Platform and the Precision Cardiology 
Lab (PCL) at the Broad Institute. The PCL 
team, led by Patrick Ellinor, aimed to 
build a comprehensive cellular atlas of 
the healthy human heart using scRNA-
seq technology. Despite the relentless 
efforts of wet-lab scientists to optimize 
the sample preparation steps, we kept 
getting substantial off-target expression 
of marker genes in the wrong cell types. 

Our ‘eureka!’ moment came when we 
realized that such noise is an unshakeable 
aspect of the technology and could not 
be fully mitigated experimentally. We 
also realized that the commonly ignored 
empty droplets could be used to learn and 
remove the background noise profile from 
cell-containing droplets. The solution was 
hiding within each dataset all along. We 
turned this key insight into robust software 
for ourselves and for the larger single-cell 
genomics community. M.B.

From the editor

“An indispensable contributory factor 
to the success of single-cell analysis is 
the development of well-performing 
and robust computational methods that 
unleash its full potential in biological 
discovery. As a useful addition to this 
toolbox, CellBender models and removes 
systematic background noise from droplet-
based single-cell assays, enhancing 
the biological signal and improving 
downstream analysis.” Lin Tang, Senior 
Editor, Nature Methods.
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